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Numerical study of conformal invariance in RSOS models 

Pet er Wi Ils 
Department of Physics, University of California at San Diego, La Jolla, C A  92093, USA 

Received 22 April 1987 

Abstract. I s tudy conformal invariance in the recently solved RSOS models of Andrews er 
a /  at both the ferromagnetic and antiferromagnetic transitions, using finite-size scaling of 
the transfer matrix. I confirm the conjecture of Huse concerning the conformal classification 
of the ferromagnetic transitions and  give evidence that the antiferromagnetic transitions 
lie in the universality class of Z,,  models. In addition, I show that conformal results can 
be applied to anisotropic systems if logarithmic corrections are taken into account.  

1. Introduction 

In  the past few years, a great deal of progress has been made in understanding the 
role of conformal invariance in two-dimensional statistical mechanics systems at 
criticality. The reason that two-dimensional systems are of special interest is that here 
the conformal transformations form an infinite-dimensional group, in contrast to the 
higher-dimensional analogues. This has the result that the correlation functions are 
greatly restricted if one postulates conformal invariance. 

A parameter of special importance in these theories is the central charge of the 
Virasoro algebra, which enters as a multiplicative constant in the two-point correlation 
function of the stress-energy tensor of the Lagrangian field theory associated with the 
continuum limit of the critical system. A major reason for the importance of this 
parameter comes from the FQS classification scheme of Freidan et a1 [l] .  In  this 
scheme, if the value of c is less than 1 and the theory is unitary in the field-theoretic 
sense, then c must fall into a discrete series between and 1. Moreover, once c is 
known, the possible scale dimensions of the theory are restricted to a small discrete 
series. Thus, if we know the central charge of a model, and it falls into the above 
classification, then the values of the critical exponents are also known. For c greater 
than 1, the classification does not seem to be useful except in models with supersym- 
metry. 

By a remarkable coincidence, at about the same time that the above developments 
were taking place, a perfect laboratory for conformal invariance was solved exactly 
(for free energy and  a subset of the critical exponents) by Andrews et a1 [2]. These 
models-generalisations of the hard square lattice gas with from two to an  infinite 
number of states-are called restricted solid-on-solid ( RSOS) models. The different 
models are parametrised by a number r which takes integer values from 4 to 00. 

The exact solution located two two-dimensional surfaces of criticality in the para- 
meter space. Huse [3] studied a subset of the scale dimensions of these two transitions 
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5220 P Wills 

predicted by the exact solution and interpreted them from the standpoint of conformal 
invariance. The first transition, antiferromagnetic in nature, had scale dimensions 
which did not fit into the FQS classification and, because the model has a Hermitian 
transfer matrix ( i t  is unitary), one conjectures that c is greater than 1 or the model has 
no conformal invariance. In  addition, it has been noticed that the subset of critical 
exponents computed for this model match those of the recently solved 2, models [4] 
(which have c greater than 1). The second transition had scale dimensions which were 
consistent with a subset of those predicted by the FQS classification, which Huse used 
to conjecture that this transition represents a generic example of the multicritical points 
in the FQS classification. 

Until now these statements have remained conjectures because the central charge 
has neither been computed nor measured numerically except in the case r = 4, where 
the model reduces to the Ising model. The fact that it has not been measured does 
not seem too surprising because the appropriate technique would be finite-size scaling 
of the transfer matrix or Hamiltonian, with the transfer matrix preferred for its 
generality, and the difficulty of using such techniques increases extremely rapidly with 
the number of states available to the variables of the model. However, the many-state 
nature of the RSOS models is somewhat deceptive, and in the third section of this 
paper, an upper bound will be given on the number of states of the system on a finite 
lattice, which implies that the computational expense of models with reasonably low 
values of r is small. It is shown in the next section that i t  is possible to study models 
up to r = 12 as cheaply as the k ing  model. 

2 ,  I describe briefly the RSOS models and give the Boltzmann weights on the 
critical surfaces as found by Andrews et a1 [ 2 ] .  In  § 3, finite-size scaling results are 
presented for the ferromagnetic transition. I find the conjecture of Huse is borne out 
by numerical measurement. Also in § 3, I study the effect of anisotropy on the relation 
between finite-size scaling amplitudes, scale dimensions and central charge for the 
case r = 4 .  I find that the logarithmic corrections due to the marginal anisotropy 
operator can be fitted into a scheme to treat marginal operators recently proposed by 
Cardy [5]. This picture is necessary for the study of the antiferromagnetic transition. 
I n  § 4, the antiferromagnetic transition is studied. I find that the Virasoro charge as 
computed by the row-to-row transfer matrix with periodic boundary conditions does 
not have a good thermodynamic limit, as expected from [ 2 ] .  However, the physics of 
the situation dictates a solution to this problem and, within the rather large errors 
forced by slow convergence of estimates to c, I find consistency with the transitions 
being in the same universality class as Z,, transitions. In  § 5, conclusions are presented. 
Finally, some computational details are presented in an appendix. 

In  

2. Description of RSOS models 

These models are parametrised by an integer r taking values from 4 to a. The variables 
of the lattice can take values from 1 to r - 1. In  addition, variables at neighbouring 
sites must differ by exactly one. r = 4 is the lsing model. The partition function of 
the model is 

where the Boltzmann weights W depend on the four sites on the corners of the 
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plaquette. Andrews et a/ [2] write these Boltzmann weights as follows: 

W (  I ,  I +  1; / - 1, I )  = W ( / ,  I - 1; I +  1, I )  = a ( / )  

w ( I + 1, I ; I ,  I - 1 ) = w ( I - 1, I ; I ,  I + 1 ) = p ( I )  

W ( / +  1, I ;  I ,  I +  1)  = y ( I )  

W ( / -  1, I ;  1, I -  1 )  = 6 ( 1 ) .  

( 2 a )  

( 2 b )  

( 2 c )  

( 2 d )  

Figure 1 shows the correspondence between the arguments of the Boltzmann weights 
and the positions on the plaquette. 

Figure 1. Notation for W ( / 1 , / 2 ;  /3, /41 

The expressions for a, p, y and 6 are elliptic functions of the parameters of the 
model and I d o  not reproduce them here. Instead, I write the weights at criticality, 
which are simple trigonometric functions: 

a ( / )  =sin(  U +  1 7 )  ( 3 0 )  

p ( / )  = s in(v  - v){sin[2?(/- I ) ]  s in [2v ( /+  1 ) ]}”~ / s in (2q / )  ( 3 6 )  

? ( I )  = s in(27)  sit((2I-t 1 ) v  - v]/sin(2/?) ( 3 c )  

6 ( I ) = s i n ( 2 q )  sin[(21- l ) v + v ] / s i n ( 2 / ~ )  ( 3 d )  

where 7 is given by 

q = n / 2 r  ( 4 )  
and, in comparison with equation (1.2.1) of [2], wo has been set to zero and p ’ = { ~ ’ ’ ~ .  
Here the parameter v measures the anisotropy of the model with U = 0 isotropic. 

It is simple to see that, because of the restriction that neighbouring lattice sites 
differ in value by exactly one, the lattice divides into two interpenetrating lattices with 
variables odd on one of the lattices and even on the other. 

The above weights define the critical surface of the model; it is one dimensional, 
parametrised by U .  There is a further division of the parameter space into four regimes. 
In  the language of Andrews et a/, the transition from regime I to I 1  occurs for q < U < 377 
and is of antiferromagnetic nature, while the transition from regime 111 to IV occurs 
for - q < u < q .  

Freidan et a /  [ 13 have classified unitary two-dimensional models with conformal 
invariance and have shown that if c, the central charge of the Virasoro algebra, is less 
than one then it can have only the values 

(5) c = 1 - 6 / m (  m + 1) m = 3 , 4 , .  . . 
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with m an  integer. In addition, all possible scale dimensions of the theory are given 
by the series 

[ ( m  + 1)p - mq]'- 1 
4m(m+1) 

p = ( l ,  . . . ,  m - l ) , q = ( l ,  . . . ,  m ) .  hp, , (m)  = 

I n  addition to the understanding of two-dimensional critical phenomena provided by 
these relations, we are given a practical classification scheme for the universality classes 
of two-dimensional statistical mechanics models. 

Based on the subset of scale dimensions of the RSOS model provided by the exact 
solution of [2], Huse conjectured, for the 111-IV transition, that 

m = r - 1  ( 7 )  

while the 1-11 transitions had scale dimensions which did not fit into the above list. 
The many-state nature of the variables of the model seems to preclude a numerical 

study by the transfer matrix method, because many-state models normally have a 
transfer matrix whose dimension grows as sL, where s is the number of states taken 
on by the spin variables and L is the lattice length. However, it is simple to see that 
the dimension of the transfer matrix for RSOS models is not so large, due to the 
constraint of neighbouring sites differing by one. One can derive an  upper bound by 
going to an arbitrary one-dimensional lattice configuration, and putting any odd number 
from 1 to r - 1 on the leftmost site. Then, on each other site, put $1  if the site variable 
differs from its left neighbour by 1, or -1 if it differs by -1. Then an upper bound to 
the dimension of the transfer matrix is given by 

3. Numerical analysis of the 111-IV transition 

In  this section, I estimate the conformal anomaly associated with the critical point of 
the RSOS models in the 111-IV regime, for values of r up  to 12. If the conjecture of 
Huse is correct, the values of c should fall into those given by equation ( 5 ) ,  with 
r = m - 1. For r = 4,5 ,  the universality classes are those of the Ising and three-state 
Potts model; the validity of the Huse conjecture has been verified in these cases both 
numerically and analytically [6]. 

To compute the conformal anomaly, I use the technique of [6], where finite-size 
scaling of the free energy leads directly to c. At the critical point, for a system with 
periodic boundary conditions, the free energy should behave as 

( 9 )  

where fK is the infinite-lattice result. To extract the approximation to c for a given 
lattice size, c (L) ,  we use a 'two-point fit': 

F /  L = fx - . rrc/6L2+0( 11 L4) 

6L(  L - 2 ) (  F ( L )  - F ( L - 2 ) )  
c( L )  = 

T [  L2 - ( L  - 2)2] (10) 

A more detailed description of the numerical work is contained in the appendix. 
In table 1, the extrapolated [7] values for c are given. These extrapolated values 

are in excellent agreement with the conjecture of Huse that this transition represents 
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Table 1. Measured and exact values for c. 

4 
5 
6 
7 
8 
9 

10 
11 
12 

0.500 08 * 0.0001 
0.700 * 0.001 
0.800 * 0.001 
0.857 * 0.001 
0.892 * 0.001 
0.917*0.002 
0.932 * 0.002 
0.944 * 0.003 
0.954 * 0.003 

0.5 
0.7 
0.8 
0.857 
0.893 
0.9 17 
0.9333 
0.945 
0.955 

an  example of all of the multicritical points in the FQS classification. It should be 
noted that the fact that the models are unitary, with c less than 1, together with the 
fact that c is determined accurately enough to identify it uniquely in the FQS series, 
provide a numerical proof of the Huse conjecture for r between 4 and 12. 

Before concluding this section, I will look at one more question related to the 
111-IV transition-the universality of amplitudes in finite-size scaling as the parameter 
U, which measures the anisotropy of the couplings, is varied. Confidence in this 
universality will be useful in the next section, where the (anisotropic) antiferromagnetic 
transition is studied, and  where formula (9) is not applicable because conformal 
invariance is no longer present. In [8] the scale dimensions of the operators of the 
quantum field theory are related to finite-size scaling amplitudes at a conformally 
invariant critical point 

1/[= 2 m /  L+corrections. (11) 

Here [ is the correlation length associated with the operator, x is the scale dimension 
of the operator, and the falloff of the corrections is governed by the other operators 
in the theory. To verify equation (11) for the RSOS models, I give, in table 2, the 
(one-point) approximations to the lowest scale dimensions of the RSOS models for 
n = 0, obtained from the first gap i n  the spectrum of the transfer matrix 

x( L )  = L/27T[. (12) 

Table 2. Measured and exact values for .Y. 

4 
5 
6 
7 
8 
9 

10 
11 
12 

0.999 95 T 0.0001 
0.074 5 = 0.02 
0.133 8*Oo.001 

0.075 = 0.005 
0.01910.003 
0.045 * 0.002 
0.014 6 * 0.001 

0.036 O*O.OOl  

0.03 1 * 0.001 

1 .o 
0.075 
0.133 3 
0.035 7 
0.071 
0.020 8 
0.044 
0.013 7 
0.030 3 
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While the convergence for x is not as good as for c, the numbers are still in good 
agreement. 

Neither this amplitude, nor the amplitude defined in the finite-size scaling of the 
free energy, remain unchanged as the parameter U is changed. It is expected, however, 
that the ratio of these amplitudes remains unchanged for large lattices. I t  is simple to 
see why this is the case by considering the transfer matrix formulation of the model. 
Anisotropy means that the correlation length in the ‘time’ direction differs from that 
in the ‘space’ direction. But isotropy can be restored by changing the scale of time 
and  this scale can be changed by taking powers of the transfer matrix. For example, 
to rescale the ‘time’ by a factor of two, we replace T by T’ ’. Transforming to a 
diagonal basis for T, we see that anisotropy can be combined with conformal invariance 
by multiplying all energies (and hence all amplitudes) by some unknown constant. 
Thus ratios of amplitudes should be universal in the usual sense. This has been noticed 
previously for Hamiltonian formulations [9, lo]. In figure 2 ,  I plot, for the Ising model 
in the RSOS formulation, values of the ratio c ( L ) / x ( L )  for several values of U ,  in the 
111-IV regime, for lattice sizes up to L = 12. 

L 

Figure 2. Convergence of c (  L ) / . Y (  L )  for r = 4 for b d r i u u s  balues o f  L; = 0 ( 0 ) , 0 . 1  (E), 0.19 
(A), 0.3 (01. 

It can be seen from these results that convergence suffers as a result of adding 
anisotropy although the estimates are consistent with convergence to the exact result. 
This lack of convergence is due to the marginal nature of the anisotropy operator [ 111. 
A marginal operator in general provides logarithmic corrections to scaling which are 
the subject of a recent paper by Cardy [5] where the scaling field for the marginal 
operator is assumed to be small. Combining my comments concerning rescaling of 
the transfer matrix with the work of [ 5 ] ,  I predict that 

c ( L )  = y ( ~ + 4 7 r ~ b g ( L ) ~ ) + O ( g ~ )  (136) 
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where 

5 2 2 5  

(14) 

with 6, @ ( x )  universal and g,, some unknown constant. 
I test this prediction in  the r = 4 model with the following algorithm. 
( 1 )  Use ( 1 3 6 )  with go large (so that g,, dependence is removed) to predict b. 
( 2 )  Use ( 1 3 a )  on the large lattices to determine y. 
( 3 )  Determine g ( L )  from ( 1 3 6 ) .  
(4) For each value of U, plot x ( g ( L ) ) .  All of these plots should fall on the same 

curve. 
The plot obtained in the final step in this algorithm is shown in figure 3. Consistency 

with the above prediction is obtained when the anisotropy is not too large, where one 
can expect significant corrections from O(g3) .  Also, it should be noted that the lattice 
sizes for r = 4 have been divided in half because in this model the even sites are frozen 
at 2 and d o  not affect the critical properties. 

0.90 I 

0.04 0.0 5 0.06 0.07 
g ( L i  

Figure 3. Uni\ersality of corrections to scaling for the r = 3  
from 2 to 1 I ,  with larger lattices in the upper left-hand corner.  
( O ) ,  0.2 ( ? I .  

model. 
L.=0.1 

Lattice sizes range 
(A), 0.15 (01, 0.19 

4. Numerical analysis of the (antiferromagnetic) 1-11 transition 

The numerical study of the antiferromagnetic transition is much more difficult than 
that of the 111-IV transition for two reasons. 

( i )  The ground state of the model has a large period 131 (figure 4) .  This means 
that, for periodic boundary conditions, one only expects amplitude estimates to con- 
verge when using lattice sizes which are multiples of the period of the ground state. 
In  table 3,  I give an example of the finite-size amplitudes for r = 5 .  A similar 
phenomenon occurs for higher r but with larger period. Clearly models with r 3 5 
cannot be studied using this method. 
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3 4 5 6 5 4 3 2 [ 1 2 3 4 5 6 5 4 3 2 ] 1 2 3 4 5 6 5 4 3 2 1 2  
4 5 6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3  

5 6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4  
6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5  
5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5 6  
4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5 6 5 4 3 2 1 2 3 4 5 6 5  

Figure 4. Ground state for the r = 7 model, where one period is given in the box. Note 
that the NE-SW diagonal has a uniform ground state. 

Table 3. Illustration of finite-lattice approximations to c, comparing the row-to-row and 
diagonal transfer matrix for r = 5 in the antiferromagnetic phase. Similar things happen 
for r = 4 and higher r. 

6-12 0.684 87 1.4610 
12-18 0.699 9 1.5308 
4-8 -0.718 418 1.2948 
8-10 -0.677 734 1.5066 

10-14 -0.698 931 1.5407 
6-8 -2.455 522 1.4199 
8-12 - 1.193 976 1.5184 

( i i )  The model is anisotropic. This means that, judging from the results of the 
previous section, we can expect problems with convergence due to the presence of a 
marginal operator. 

These problems can, however, be solved. To circumvent the first problem, I use a 
diagonal-to-diagonal transfer matrix [12] which is explained in figure 5. The basic 
idea is that the ‘time’ direction of the transfer matrix is rotated by 45“. As shown in 
figure 5, this ensures that the ground state fits on the ‘space’ direction of the transfer 

X 

x o x  
x 0 x-0 x 

I 
x 0 x-0 x 0 x 

x 0 x-0 x 0 x 0 x 
0 x-0 x 0 x 0 x 0 x 

I 

I 
I 

I 
o x o x o x o x o x  

o x o x o x o x o  
o x o x o x o  

o x o x o  
o x o  

0 
Figure 5. Diagonal-to-diagonal transfer matrix for the r = 4 model. x and 0 represent up 
and down spins, respectively. The lines join spins in one spatial row. 
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matrix for any r. Using this trick, the problem of the ground state disappears, as shown 
by the estimates for r = 5 in table 4. 

As for the second problem, the anisotropy of the model slows drastically the 
convergence of the lattice estimates; also, because the size of lattice I can use is not 
particularly large for values of r greater than 5 ,  I cannot fit logarithmic corrections as 
in 9 4. However, I can vary the parameter U to minimise the corrections due to 
anisotropy. In  this application there is a conjecture for the central charge and so one 
can simply vary v until the variable y in equation (136) is one, which indicates that 
the associated conformal field theory is isotropic. For general applications, one would 
vary the amount of isotropy until the best convergence was found. In  figure 6, I give 
a comparison of convergence for two different values of y for r = 5. As can be seen, 
the convergence does improve greatly as y approaches 1. 

With these comments in mind, I present table 4, which gives estimates of the central 
charge of the RSOS model for r between 4 and 9. These numbers were obtained by 
using the diagonal-to-diagonal transfer matrix and searching the space of U until 
isotropy prevailed. Some of the estimates of c for r greater than 6 have no error ranges 

0 

0 
5 l l l l l l l  I I  I 1  I 

0 5 10 15 
L 

Figure 6. Comparison of convergence of finite-lattice estimates of c / L  for two different 
magnitudes of the isotropy y. 0, L' =0.624, y =2.0.  0, L' =0.84, y = 1.0. A y of one  
represents an  isotropic model. 

Table4. Estimates for the ratio of central charge to scale dimension of the antiferromagnetic 
transition for r = 4-9. Estimates without error ranges are  simply the values found on the 
largest lattices studied. 

4 0.499 95 k 0.0001 0.5 
5 6.04k0.1 6 
6 5.95 * 0.2 6 
7 = 10.7 10 
8 7.6 k 0.6 7.5 
9 = 14.7 14 
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and are meant only as indications of the asymptotic values. The reason for this is that, 
for r greater than 6, even for the 'best' value of U, convergence of the lattice estimates 
for c was very poor. The numbers without error ranges quoted in table 4 are simply 
the values taken on the largest lattices sampled. For r = 4, 5 ,  6 ,8  the data are consistent 
with the conjecture that these models are in the universality class of the Z,, transition 
with r = n + 2 .  

5. Conclusions 

In this paper I have studied various aspects of conformal invariance in the RSOS models 
of Andrews er a1 [Z ] .  For the ferromagnetic transition, for r < 13, a numerical proof 
has been given of the conjecture of Huse [3] that these models give examples of the 
generic multicritical points of Freidan et a1 [ 13. 

I have also given evidence that, for r = 4, 5,6,  8, the antiferromagnetic transition 
falls into the universality class of Z,,, with n = r -2, as is expected from our partial 
knowledge of the scale dimensions. For the other values of r studied, I was unable 
to obtain sufficient convergence on the lattice studied to determine the universality 
class, but the estimates of the central charge of the Virasoro algebra obtained from 
the largest lattices falls reasonably close to the value expected from the conjecture that 
these models are also in the 2, universality class. My data indicate that the models 
are conformally invariant and  have c > 1. 

I have also shown that finite-size scaling can be used to study anisotropic systems 
if logarithmic corrections due to the marginality of the anisotropy field are taken into 
account. This idea is summarised in figure 3. 

Finally, it would be interesting to formulate a Hamiltonian limit of the model for 
at least two reasons. First, one could study the effect of anisotropy on the convergence 
of lattice estimates in this limit. Second, larger lattices are possible in the Hamiltonian 
version and better results might be obtained for the antiferromagnetic transition. 
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Appendix. Some numerical details 

In this appendix I will briefly explain how the data presented in the text were obtained. 
The first choice to be made was of the method used to diagonalise the transfer matrix. 
Two programs were written. The first simply stored the transfer matrix in memory 
and used a conventional algorithm for diagonalisation, taking into account the fact 
that diagonalisation in a translationally invariant subspace is sufficient. The second 
used a Lanczos method [ 131 which required only a small number of vectors, of length 
equal to the dimension of the transfer matrix, to be stored. Here one applies the 
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transfer matrix many times to an initial vector, generating a new matrix which has 
very low dimension (about twenty) and has identical low-lying eigenvalues to the 
original matrix. The vector obtained at each step was kept in two lists which were 
kept sorted so that they could be searched in a binary fashion. Also, the transfer 
matrix was factorised into L/2 sparse matrices, where L was the spatial length of the 
lattice. For large-dimension transfer matrices, the first method should go like d' and 
the second like d In d where d is the dimension of the transfer matrix and  L the lattice 
length, making the second method faster than the first (as well as more compact). 
Unfortunately, the transfer matrix used here has a rather complicated form, with 
next-nearest-neighbour interactions, which gave a significant advantage to the first 
naive method. The asymptotic computational effort mentioned above never set in on 
the lattices studied, which included transfer matrices of dimension up  to lo4. Thus 
all of the data given in the text were generated using the naive method. Much of i t  
was checked using the independent Lanczos program. In table 5, I show some of the 
timings and storage requirements for sample values of r on large lattices. 

Table S. Timing, and  storage requirements for \slues of r studied using the naive method. 
c PL time is given for a Ridge-32 minicomputer.  Storage requirements are  determined b) 
the dimension of the transfer matriy, dim T, in the translationally invariant subspace.  

r Ltn,,, dim J < PU time ( m i n )  

4 
5 
6 
7 
8 
9 

10 
I I  
1 2  

I 2  
18 
16 
14 
14 
I4 
14 
12 
14 

434 
546 
424 
551 
398 

1042 
644 
530 
890 

550 
600 
64 1 
300 
402 

1380 
I020 
230 

1900 

Next, 1 discuss the error analysis for the data presented in the text. For the 
extrapolated values for c and x presented in tables 1 and 2 ,  the data were sufficiently 
convergent to apply the method of VBS sequence transformations, as described in [ 141, 
for both the extrapolated measurements and the error ranges. For the data shown in 
figures 2 ,  3 and 6, the only source of error was computer roundoff error. Double 
precision was used in all computations, and thus the error bars in these figures would 
be much too small to plot on the scales shown. Note that in figure 3, a source of error 
would be introduced in the determination of y. This was removed by shifting each 
curve up  or down to get the maximum amount of superposition. 

In table 4, the extrapolations and error ranges for r = 4 and r = 5 were generated 
using the VBS method. For r = 7 and r = 9, no error estimates were made, because the 
data did not converge and are included only to show that the lattice estimates were 
in the right ballpark. For r = 6 and r = 8, the estimates seemed, at large lattice sizes, 
to be converging to the numbers given in table 4, but not enough numbers in  the 
asymptotic region were obtained to form reliable VBS approximants. The lattice 
estimates here were extrapolated by eye, and the error ranges are a subjective estimate 
of the error involved in this extrapolation. 
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